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ABSTRACT: The paper presents an adaptive multivariable control system for a Multi-Input, Multi-Output
(MIMO) nonlinear dynamic process. The problems under study are exemplified by a synthesis of a course angle
and forward speed control system for the nonlinear four-Degrees-of-Freedom (4-DoF) mathematical model of a
single-screw, high-speed container ship. The paper presents the complexity of the assumed model to be
analyzed and a synthesis method for the multivariable adaptive modal controller. Due to a strongly nonlinear
nature of the ship movements equations a multivariable adaptive controller is tuned in relation to changeable
hydrodynamic operating conditions of the ship. In accordance with the given operating conditions controller
parameters are chosen on the basis of four measured auxiliary signals. The system synthesis is carried out by
linearization of the nonlinear model of the ship at its nominal operating points in the steady-state and by means
of a pole placement control method. The final part of the paper includes results of simulation tests of the
proposed control system carried out in the MATLAB/Simulink environment along with conclusions and final

remarks.

1 INTRODUCTION

Nonlinear control systems are commonly encountered
in many different areas of science and technology. In
particular, problems difficult to solve arise in motion
and/or position control of various vessels such as
drilling platforms and ships, sea ferries, container
ships, etc. Complex motions and/or complex-shaped
bodies moving in the water, and in the case of ships
also at the boundary between water and air, give rise
to resistance forces dependent in a nonlinear way on
velocities and positions, thus causing the floating
bodies to become strongly nonlinear dynamic plants.

In general, there are two basic approaches to solve
the control problems for nonlinear plants. The first
one called “nonlinear” includes synthesizing a
nonlinear controller that would meet certain

requirements over the entire range of control signals
variability (Fabri & Kadrikamanathan 2001; Huba et
al. 2011; Khalil 2001; Tzirkel-Hancock & Fallside 1992;
Witkowska et al. 2007). The popular methods of
predictive control (MPC) employ nonlinear or on-line
linearized models of the plant (Maciejowski, 2002;
Rawlings & Mayne, 2009; Limon et al., 2005; Qin &
Badgwell, 2003). However, in the case of MIMO
nonlinear processes such nonlinear control algorithms
are too complex for computations to be performed on-
line. Such tasks are particularly difficult when
additional constraints on the control signals are
considered, which demands using some numerical
procedures to solve optimization problems with
constraints. When a nonlinear description of the plant
is not known accurately, predictive controllers
employing artificial intelligence, for example neural
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networks (Akesson & Tojvonen, 2006; Lawrynczuk,
2010; van der Boom et al., 2005) can be used.

The second approach called “linear” consists in
designing an adaptive linear controller with varying
parameters to be systematically tuned up
corresponding to changing plant operating conditions
determined by system nominal operating points.
Here, linearization of nonlinear MIMO plants is a
prerequisite for the methods to be employed. As a
results of the linearization local linear models are
obtained and they are valid for small deviations from
operating points of the plant.

Since properties exhibited by linear models at
different (distant) “operating points” of the plant may
vary substantially the controllers used should be
either robust (Ioannou & Sun 1996) (usually of a very
high order as has been observed by (Gierusz 2005)) or
adaptive with parameters being tuned in the process
of operation (Astrom & Wittenmark 1995).

If the mathematical description of the nonlinear
plant is known, then it is possible to make use of
systems with linear controllers prepared earlier for
possibly all operating points of the plant. Such
controllers can create either a set of controllers with
switchable outputs from among which one controller
designed for the given system operating point (Banka
et al. 2010a; Bantkka et al. 2010b; Dworak &
Pietrusewicz 2010) is chosen, or multi-controller
structures from which the control signal components
are formed. One example is weighted means of
outputs of a selected controller group according to
Takagi-Sugeno-Kang (TSK) rules, i.e. with weights
being proportional to the degree of their membership
of appropriately fuzzyfied areas of plant outputs or
other auxiliary signals (Tanaka & Sugeno 1992;
Tatjewski 2007, Dworak et al. 2012a; Dworak et al.
2012b).

What all the above-mentioned multi-controller
structures, have in common is that all controllers
employed in these structures must be stable by
themselves, in distinction to a single adaptive
controller with varying (tuned) parameters. This
means that system strong stability conditions should
be fulfilled (Vidyasagar 1985).

In the presented paper an adaptive modal MIMO
controller with (stepwise) varying parameters in the
process of operation is studied. The controller can be
physically realized as a multi-controller structure of
modal controllers with switchable outputs. The
considered adaptive control system will be designed
for all possible “operating points” of the plant. In the
simulation studies a 4-DoF nonlinear model of a
single-screw high-speed container vessel has been
used as a nonlinear MIMO plant. The main goal of the
paper is a synthesis of the course-keeping adaptive
control system for a container vessel assuming two
controlled variables: yaw angle and forward speed of
the ship relative to water.
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2 NONLINEAR MODEL OF A CONTAINER SHIP

2.1 Ship dynamics

The considered course-keeping control system
structure has been studied by means of a 4-DOF
nonlinear mathematical model of a container vessel
(Son & Nomoto 1981, Fossen 1994 The vessel is 175m
long (L), 25.4m wide in beam (B) with an average
draught of 8.5m (H). In order to describe movements
of the ship two reference systems are defined. The
yaw angle and the ship position are defined in an
Earth-based fixed reference system. On the contrary,
force and speed components with respect to water are
determined in a moving system related with the
ship’s body and the axes directed to the front and the
starboard of the ship with the origin placed in its
gravity center (G) (shown in Fig. 1).

Designations for the linear and angular speed of
the ship, in the considered degrees of ship motion are
as follows: u (surge velocity), v (sway velocity),
p (roll rate) and r (yaw rate). Corresponding
designations of the position coordinates of the ship
are as follows: X, (ship position in N-S), y_ (ship
position in W-E), ¢ (roll angle), ¥ (yaw angle).

N
i
X,

Figure 1. Ship’s co-ordinate systems.

General nonlinear equations of motion in surge,
sway, roll and yaw (Son & Nomoto 1981, Fossen 1994)
are as follows:

(m+m )vr:X
m+m ur+myayr—mylyp=

p-mJlyv—mlur+WGM¢=K

X X

(m-+m, )i
(m+m )v
(1,+J,)

(I, +J,)r+m,av=N-Yx,.

Here m denotes the ship mass. The m , m,
J., J, denote the added mass and added moment
of 1nert1a in the x and y directions and about the
X -axes and z - axes, respectively. / ~and [,
denote moment of inertia about the x-axes and z -
axes, respectively. Furthermore, «, denotes the x -



coordinates of the center of m , whereas [ and [/ )
denote the z -coordinates of tﬁe centers of m, and
m,, respectively. X; is the location of the center of
gravity in the Xx -axes, GM is the metacentric
height and W is the ship displacement.

The hydrodynamic forces X , Y and moments
K, N inabove equations are given as:

X=X, uu+(1-0)T+ X, vr+ X V' +X,r’

: . @
X 40"+ Fysin(6),

Y=Yyv+Yr+Y p+Y,4+Y, V+Y

vy rrr

+varv r+ervr +va¢v ¢+ v¢¢ ¢ (3)

+Y,,r ¢+Y¢¢r¢ +(1+a,, )F, cos(5),

N=N,yv+N,r+N,p+Np+N, VAN
+N, V'r+N, vr2+Nw¢v ¢+N¢¢v¢ 4)
+N, 9+ N, ¢ +(x, +a,x, ) Fy cos(6),

K=Kv+Kr+K p+K,+K vV +K, r’
+Kwrv2r +K, v+ va¢v2¢+ KV¢¢v¢2 5)
+K, ¢+ K, rd* —(1+a, )z, F, cos(5).

Here, the rudder force F v can be resolved into:

_ 6134 4, (u +v )sm(a )s (6)
YoAv225 2V

where:

=5+tan” (vg /ug), @)

U, =ng\/1+8kKT /(zJ?), @®)

Vi =7/v+cRrr+cRWr3 +cRmr2v, 9)
where:

J:uPV/(nD), (10)

K, =0.527-0.455J, (11)

Up =cos(v)[(1—wp)+r{(v+xpr)2 +c, v+ cprr}}. (12)

The remaining coefficients and model parameters
used in the equations (1) are given by (Fossen 1994).

The jetua-l—speed of the vessel is designated as
V =u’+v* . The control signals of the nonlinear
MIMO model of the ship (1) are: 0 (rudder angle)
and 7n (propeller shaft speed).

2.2 Actuators dynamics

In order to synthesize the control system, the steering
machine model based on (Fossen 1994) is represented
by the first-order dynamic system with time constant
15=1.8s and gain K;=1, whereas the shaft model
is represented by the linear model with average time
constant 77 =10.48 s and gain K, =1. Therefore,
the actuators block shown in Fig. 6 can be described
in the state-space form:

Xl(t): A1X1(t)+ Bluc(t)

(13)
yl(t):X](t)s
where:
-0.556 0 055 0
A= ,B, = :
0 -0.095 0 0.095
Here X [5 :I is a vector of
signals and
[5 is a vector of control

51gnals In the snnula’aons the followmg limitations of
control signals are assumed: maximum speed of the

screw 71, =160 rpm, maximum rudder angle
O =15 deg and maximum rudder angular velocity
éJr:ax = 5 deg/s

3 MULTIVARIABLE ADAPTIVE CONTROL
SYSTEM

The dynamic model of the container ship (1) can be
described in the state-space nonlinear form:

%,(t)= T (%,.u)
y(£)=9(x,.u),

with the semi-state vector X,(f) defined as shown
in Fig 1.

(14)

Xz(t):[u vpr g l//]T (15)
and output and control signals defined as:
T
t)=|ul? t
40 ~{ute) v()] »

u(t)=[o(¢

T
) n(0)] -

In order to synthesize the control system the
resulting model is linearized in the nominal operating
points of the ship, defined as X,(f)=X,, t). The

nominal state vector of the model (1) in the nominal
operating regimes is defined as:
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x,,(t)=[u, v, 0 r, ¢ var]. (17)

n

The values of state variables (u,, v,, 7,, ¢n ) are
defined in the turning circle simulation tests carried
out in MATLAB/Simulink for various control signals:
0, and n,. The range of changes of these signals is
as follows: O, = —15+15> deg with the resolution of
1degand n, =§ +160> rpm with the resolution of 5
rpm, which results in a set of 992 operating points.

Each combination of the control signals and their
corresponding parameters of the ship movements:
u v v, and ¢ determines the nominal

n’/ n /

operating point of the ship. The resulting functions

un(é',n), V (5,n , rn(é',n), ¢n(5,n) are shown in

n

Figures 2, 3, 4 and 5, respectively.
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Figure 2. The surge velocity in the nominal operating
points.
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Figure 3. The sway velocity in the nominal operating points.
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Figure 4. The yaw rate in the nominal operating points.
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Figure 5. The roll angle in the nominal operating points.
As a result of the linearization performed in the

whole range of the nominal control signals linear
state-space models of the container ship are obtained:

X, (0) = A[X, (1) = X,, ]+ B,[u(®)~u, ]

V() Y, =C.1% (0%, 1 o
where:
_all a, 0 a, a; 0]
Ay Gy Gy Gy Gy 0
Azz[ifT(X»u)T _| %1 G Gy Gy A 0 ’
oX o Ay Ay Ay Ay a4 0
0 01 0 00
i 0 0 ay as 0]

r T
' bll b21 b31 b41 0 0:|

Bzz[ifT(x,u)}
au _b12 b22 b32 b42 O O

o . ! 100000
_g (X,U) = B
OX x=x, 000001

n

Xy=Xap
u=

C2



with the entries a; and b, depending on the
values of surge Veloc1ty u,, sway velocity v, , yaw
angular velocity 7, , roll angle ¢ and control
signals Un:[5 no in the nominal operating
points of the container vessel. Now, the full state
ector X(f)_,of the vessel can be taken as:
le(t) X, t:l . Therefore, the state vector of the ship

is as follows:

X(t):[5 nuvpre l//]T. (19)

Finally, the full linearized model of the container
vessel is described by the matrices:

SHSHE

The obtained linear models (20) with known
parameters are the starting point for applying many
known methods for linear multivariable control
system design. When the linear MIMO systems are
considered multivariable modal (or possibly optimal
LQG/LQR) controllers are usually designed.

In the case of non-measurable state variables,
modal controllers used in the proposed control
system structure are multivariable dynamic systems
with parameters defined in time domain by:

X, (1)=AX.(1)+B.e()

(20)

(21)
ur)=C, x.(1)+D.e(t),
where:
A=A-BF-LC,B =L,C =-F, D, =0. (22)

Here, F is the state feedback matrix related to
the state vector components of the plant models, and
L is the gain matrix of full-order Luenberger
observers, which reconstruct the state vector of the
plant linear models (20). Synthesis of modal
controllers is based on the use of the various
techniques of pole placement in stable regions of the
s-plane. As it was shown in (Barika et al. 2013) the
designed modal controllers may be calculated using
four methods: Eigenvalues  Method (EM),
Eigenvectors Method (EVM), Polynomial Method
(PM) and Polynomial Matrix Equations Method
(PME) which in case of MIMO plant yield different
results for the same data taken for calculations. The
method we finally choose should depend on the
numerical conditions for the plant given, its local
linear models as well as the result of calculations we
need. In the EM, EVM, and PM methods the synthesis
of MIMO modal controllers base on separately
finding the matriccs F and L for which,
according to (22), their “standard” state-space
equations have been formulated. In the PME method,
instead of separately calculating the matrices F and
L, the controller transfer function matrix is directly
obtained at one go by solving the Diophantine left
polynomial matrix equation. More particular details
on this subject may be found in (Barika et al. 2013).

The controller presented in the paper has been
synthetized with the use of EVM method.

If strictly causal modal controllers based on the
full-order Luenberger observers are selected then
designing performed directly in the time domain as
well as in s-domain (without solving polynomial
matrix equations) leads to calculating the feedback
matrix which places the closed-loop system
matrix eigenvalues in the desired locations on the s-
plane and the weight matrix L of the full-order
Luenberger observer for appropriately desired
observer poles. In the case of measurable state
variables it is sufficient to determine the state
feedback gain matrix F in order to synthesize
modal control system in time domain. If the plant
model is described by matrices (20) the vector of
commanded control signals is as follows:

u, (=F (X, —x(®))+u,, (23)

which shifts the poles of a linear plant model to
desired locations, which in our case are as follows:
[-0.11, -0.12, -0.13, -0.14, -0.15, -0.16, -0.17, -0.18]. These
experimentally assumed values allow us to achieve
sufficiently fast dynamics of control system and
reduce output signals overshoots and control signals
saturation. The reference state vector X, is defined
as:

X,y =[0 My 1, 0000 y/,ef] (24)

Here n,, is the reference shaft speed
corresponding to the reference surge velocity of the
ship in a steady-state for 6 =0. The resulting set of
992 local controllers has been used to create
multivariable adaptive controller with stepwise
varying parameters. This controller is tuned with four
measured auxiliary signals including: surge and sway
speed components of the ship with respect to water as
well as yaw rate and roll angle of the ship, which are
shown in Figures 2, 3, 4 and 5. The current nominal
operating point is determined by minimization of a
quadratic functional J,:

2 2 2 2
Au Av Ar Ag
J,= + + + ,
umax vmax rmax ¢max
where Au, Av, Ar, A¢ are auxiliary signals
deviations from the values in the nominal operating
points, whereas U, , Viax r Fmax » Pmax  are the

maximum values of auxiliary signals in the whole
range of nominal operating points.

(25)

The block diagram of the proposed multivariable
adaptive control system is shown in Fig. 6. It consists
of the state feedback matrix F whose entries are
switched in a stepwise manner according to—the
current operating point of the ship.
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Figure 6. Block diagram of the proposed control system
structure.

If the state vector of the ship model (1) is not
measurable the state feedback matrix should be
replaced by an adaptive modal controller (21) based
on the Luenberger observer or the Kalman filter
(Barika et al. 2013).

The stability of the above described closed loop
system with modal (gain-scheduled) controller has
been proved by the use of the stability theory of the
nonsmooth system given in (Shevitz and Paden,
1994), used successfully e.g. in (Lee et al., 2001).

4 SIMULATION TESTS

The usability of the propose control system is
illustrated with a multivariable adaptive control
system for the nonlinear MIMO model of a container
vessel (1). The goal of the presented control system
was a simultaneous control of the course angle and
forward speed of the container ship. Results of
simulations carried out in the MATLAB/Simulink
environment are presented in Fig. 7 and 8. The initial
state vector of the ship was:

x(0)=[0 40 8.14 0 0 0 0 0] . (26)

which means that the ship goes forward with the
speed of 8.14 knots. The first maneuver at t=100 s was
the change of the desired forward speed to 25.44
knots. Then after 200 s the desired course angle was
changed to 20° with keeping the ship forward speed
at 2544 knots. Both changes have been done
according to the assumed ship dynamics and all
maneuvers have been done with acceptable values of
the control signals: rudder angle and shaft speed,
presented in Fig. 8.

Figure 9 presents values of indices i and j which
denote the current operating point. Changes of their
values show moments in which the feedback matrix F
entries are modified (switched).

5 CONCLUSIONS

In the paper an adaptive control system for the
nonlinear MIMO plant was proposed and tested. The
utilized adaptive gain scheduling modal controller
allows one to control a strongly nonlinear process,
here the model of a container vessel. The synthesis of
the controller is based on the linearization of a
nonlinear ship model in operating points
corresponding to the set of 992 typical operating
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regimes. The adaptive controller parameters vary in a
stepwise way on the basis of auxiliary signals
measured during ship operation. The presented
example of multivariable control of the ship, shows
efficiency of this method and the appropriateness of
its use to the direct control or as a part of more
complex control systems, e.g. a model loop in the
MEC control structure (Dworak et al. 2012b).
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Figure 7. The course angle and speed of the ship.
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Figure 8. Rudder angle and shaft speed.
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Figure 9. Moments of switching of the feedback matrix F.
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